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Optimized Cluster Theory, Optimized 
Random Phase Approximation and 
Mean Spherical Model  for the 
Square-well Fluid with Variable Range 
G. KAHL and J. HAFNER 
lnstitut fur Theoretische Ph ysik, Technische Universitat, 
Karlsplatz 13, A 1040 Wien. Austria 

(Received April 30, 1982) 

A critical evaluation of the optimized cluster theory, the optimized random phase approximation 
and the mean spherical model for describing the effect ofattractive forces upon the structure and 
thermodynamics of liquids is given at the example of the square-well fluid with a variable range 
of the attractive interaction. Our results demonstrate that for a general width of the attractive 
well, the optimized cluster theory is more accurate than the mean spherical model. 

1 INTRODUCTION 

Over the last few years, perturbational methods such as the Gibbs- 
Bogoljubov variational technique’.’ and the Weeks-Chandler-Andersen 
“blip-function” expansion3-’ have greatly contributed to our under- 
standing of the thermodynamic and structural properties of liquid metals 
and alloys. The physical picture emerging from these theories is that the 
liquid has its volume determined by the attractive part of the intermolecular 
potential, but once the volume has been determined, the liquid may be con- 
sidered as a hard-sphere fluid confined within that volume. Although this 
picture is generally correct for simple liquids near their melting point, there 
are situations, where the attractive part of the interatomic potential becomes 
more important: (a) in expanded metals, long-wavelength density- 
fluctuations are observed. These fluctuations cannot be explained in any 
model considering only repulsive forces and must be attributed to the at- 
tractive interactiom6 (b) In liquid mixtures non-additive attractive inter- 
actions cause chemical ordering: if the interaction between two unlike 
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110 G .  KAHL AND J .  HAFNER 

atoms is more attractive than that between atoms of the same species (i.e. 
if w,, < ~(CO,, + US,), oij is the interaction potential for atoms i and j ) ,  
heterocoordination will be preferred. If oAB > %w,, + w,,), the system 
will show long-wavelength concentration fluctuations with a tendency to- 
wards phase separation’** (see Ref. (9) for the calculation of effective inter- 
atomic potentials using pseudo-potential theory and their interrelation with 
the ordering problem). 

The theory needed to describe the influence of the attractive forces on the 
liquid structure is inherently more complicated than the technique re- 
quired to reproduce the effect of the repulsion. Andersen and Chandlerlo*” 
and. Andersen et a1.l’ have proposed a series of related pertubation approx- 
imations for describing the effect of attractive interactions on the structure 
and thermodynamics of liquid and liquid mixtures which they call the opti- 
mized random phase approximation (ORPA) and the optimized cluster 
theory (OCT). Their theory may be cast into the form of a variational 
problem defining a renormalized (“optimized”) potential for the attractive 
forces. This is a very attractive feature if systems with rather complicated 
pair potentials-such as liquid metals-are to be considered. In this case, 
the numerical solution of one of the integral equations relating the pair 
correlation function to the pair potential is an extremely tricky task, whereas 
the numerical solution of the variational problem is readily achieved. The 
ORPA and the OCT have been applied to a variety of potentials, such as the 
Lennard-Jones potential, simple models of ionic solutions,’ to mixtures of 
hard spheres and hard spheres with attractive square well  interaction^,'^ to 
a simple square well fluid” and to some selected liquid The 
ORPA and the OCT start from an asymptotic form of the direct correlation 
function for large interparticle separations. Hence they are inherently low- 
density approximations (although only the OCT becomes exact in the low- 
density limit). However, the work of Andersen et ~ 1 . ~ 9 ’ ~  has shown that at 
least for moderately strong attractions and relatively elevated temperatures 
(i.e. for T* = ( P E ) - ’  > 0.75, E is the depth of the attractive Lennard-Jones 
interaction, /3 = l/k, T) the ORPA and especially the OCT are remarkably 
accurate over the entire range of liquid densities, except for the immediate 
neighbourhood of the liquid gas coexistence curve. On the other side, the 
influence of the strength and the range of the attractive interactions on the 
solutions of the ORPA and the OCT has not been investigated systemati- 
cally as yet. In view of a prospective application of these theories to liquid 
metals and alloys near or not too far above their melting point such an in- 
vestigation seems to be highly desirable, since T* may be as small as 0.50. 

The present study has been performed with intention to fill this gap. ORPA 
and OCT calculations have been performed for a square-well fluid with 
varying depth and range of the attractive interaction and for a wide range of 
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STRUCTURE OF SQUARE-WELL FLUID I 1 1  

densities and temperatures. The square-well fluid has been chosen as a 
test system because: (a) it is easy to handle, (b) reasonably well repre- 
sentative for liquid metals and, most importantly, (c) the results of the 
ORPA and the OCT may be compared with already existing results of 
computer simulations (Monte-Carlo studies,"-" molecular dynamics 
s t ~ d i e s ~ ~ , ' ~ )  and of analytical calculations (Percus-Yevick (PY) s t u d i e ~ , ~ ~ - ~ ~  
hypernetted chain (HNC) studies," mean spherical approximation (MSA),' 
parametric integral equation and perturbation theory: Carley28~29) are 
available for comparison. Our results for the structure and thermodynamics 
allow for a critical evaluation of the RPA, the ORPA and the OCT (in 
a variational formulation) for the square-well fluid. 

2 SUMMARY OF WELL-KNOWN RESULTS 

For a simple fluid of N spherical atoms in a volume V the direct correlation 
function c ( r )  is defined by the Ornstein-Zernike (OZ) relation 

d3r'c()r - r'l)h(r'). (1) 

Here n = N / V  is the number density, h(r) = g(r) - 1 the total correlation 
function and g(r)  the pair correlation function. An approximate integral 
equation may be derived from the OZ relation by combining it with a 
closure relating c(r) and h(r).  The Perms-Yevick (PY) integral equation is 
obtained by setting 

c(r) = f ( r ) y ( r ) ,  (2) 

the hypernetted chain (HNC) approximation is defined by 

c(r) = f ( r ) y ( r )  + y(r> - lny(r) -1 (3) 

(see Barker and Henderson3' for a general review of liquid state theory). 
In Eqs. (2) and (3) y(r)  = g(r)exp{ju(r)} and f ( r )  = exp{ - j u ( r ) }  - 1, u(r) 
is the interatomic potential. For large r ,  Eq. (2) becomes 

c(r) = - /?u(r) (4) 

This is the random-phase approximation (RPA) which is seen to be the 
asymptotic form of the PY-closure. Using the RPA-closure not just for 
large r, but for all r in the attractive region of the potential defines the mean 
spherical approximation. Hence for a potential with a hard core of diameter 
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I12 G. KAHL AND J. HAFNER 

a, the MSA is specified by 

c(r) = - /?u(r) r > c 

and 

h(r) = - 1 r < a  ( 5 )  

combined with the OZ equation. Note that the MSA is identical to the PY 
equation for the hard sphere fluid. 

Let us now turn to systems with a repulsive hard core interaction, i.e. 

with 

uo(r)  = a3 r < a 

uo(r)  = 0 r > a (7) 

and an attractive interaction ul(r). For a square well potential this would be 

= o  r < a  

ul(r)  = - E a < r < La (8) 

= o  r >Lu 

The starting approximation for the ORPA and the OCT is to write the 
direct correlation function as 

c(r)  = c o w  + 4 ( r )  (9) 

co(r) is the direct correlation function of the hard-sphere potential. Outside 
the core $(r)  = - bu,(r). Without further specification of $(r < a )  (4 = 0 or 
4 =  - E are possible choices), this is the R P A  for the attractive interaction. 
It has the unphysical feature of a pair correlation function which is non-zero 
inside the core. Andersen et d." proposed to choose 4 ( r )  inside the core so 
that g(r) = 0 inside the core. 4(r )  determined by this condition is called the 
"optimized" potential. If co(r) in Eq. (9) is taken to be the analytical solution 
of the hard-sphere PY-eq~a t ion ,~  1 * 3 2  this approximation is entirely equiva- 
lent to the MSA. If an accurate expression foy co(r) is used (Andersen et al. 
use the scmiempirical g O ( r )  of Verlet and W e i ~ ~ ~  and the technique of 
Grundke and Henderson34 to construct the corresponding cO(r)) ,  the 
approximation is called the optimized random phase approximation 
(ORPA). The ORPA pair correlation is usually written as 

d r )  = go(r> + V(r) (10) 
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STRUCTURE OF SQUARE-WELL FLUID 113 

Inserting Eq. (9) in the OZ-relation yields an equation for %(r) in the form 
of a chain sum of convolution integrals over the optimized potential #(r).  
The chain may be summed by the standard Fourier transform technique to 
yield (a caret denotes a Fourier transform of a function) 

Here S,(k) = (1 - nE,(k)) is the static structure factor of the reference 
system. Note that this is not a solution for @(k) but an integral equation 
determining the optimized potential 4. This integral equation may be solved 
using a variational p r o c e d ~ r e . ~  Define the functional F by 

1 
W) = 7 j d 3 k { n s , ( k ) m 0  - 1n ~ 1 -  ~ W ) W I ~  ( 1 2 )  

( 2 4  n 
and take its functional derivative with respect to &k) 

After Fourier-transforming this gives 

Now since we require g(r)  = 0 for r < 0, it follows that 

%(r) = 0 r < (T (15) 

We see that the correct behaviour of the optimized potential is such as to 
make F stationary with respect to changes in 4(r )  for r < (T. Note that 
similar variational formulations may be derived for all the various integral 
equations derived from the O Z - r e l a t i ~ n . ~ ~  

The ORPA-expression for the free energy A is most easily obtained via 
the coupling constant formalism, i.e. 

A = A ,  + 5 2 jol dII jd3r4(r)g(r, 1) (16) 

where g(r, A) is the pair correlation function of a system with the attractive 
interaction @(r) .  Using (lo) and converting the interaction integral to 
Fourier space allows to carry out the I I  - integration with the result 
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I14 G .  KAHL AND J .  HAFNER 

Andersen and Chandler' I have proposed the exponential approxi- 

(18) 
mation (EXP) 

for the pair correlation function. The EXP has been derived by rather com- 
plicated diagrammatical techniques which need not to be reproduced here. 
We will present only a very simple argument which should make it at least 
plausible that the EXP-g(r) can be expected to be more accurate than g(r) 
calculated using the ORPA. We start from the exact relation (see, e.g. 
C r ~ x t o n ~ ~ )  

A corresponding relation holds for the unperturbed reference system. Here 
E ( r )  is a function, the so-called bridge-function, representing the sum of the 
elementary graphs (or bridge diagrams) in the cluster expansion for the 
direct correlation function. E(r) = 0 defines the HNC closure, cf (3). Very 
recently, Rosenfeld and A s h ~ r o f t ~ ' , ~ '  have shown that within the accuracy 
of present day computer simulations the bridge function is a universal 
function, independent of the assumed pair potential. In our case this means 
E(r)  = Eo(r). Thus taking the difference of the relation (19) for the reference 
system and the perturbed system, we arrive at 

g(r) = S o w  exp {W)) 

c(r) = g(r) - 1 - Ing(r) - flu(r) + E ( r )  (19) 

W r )  - lngo(r) = g(r) - go(') - ((3) - Co(r) - m) 

In g(r)  = In go(') + %(r) 

(20) 

(21) 

and using (9) and (10) we have finally 

This is just the EXP-result. (20) suggests that the error committed in using 
the approximate relations (9) and (10) will cancel in the EXP approximation, 
provided that go(r) is the exact hard-core correlation function. The free 
energy calculated in the same approximation is just the ORPA plus an 
additional term B2 

A = AORP* + B2 (22) 

B - 1 2  - 2n /d3rigo(r)~expiqr))  - W) - 11 - 4 ~ 1 2 )  (23) 

(22) is called the ORPA + B2 approximation. Eq. (22) for the free energy and 
(18) for the pair correlation function together are referred to as the optimized 
cluster theory (OCT). 

3 VARIATIONAL SOLUTION FOR THE OPTIMIZED POTENTIAL 

The optimized potential @(r)  may be found either by solving the integral 
equation (1 1) numerically or by solving the variational condition (14). 
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STRUCTURE OF SQUARE-WELL FLUID I15 

Since the functional F [ 4 ]  is positive definite for all q5 for which the integral 
exists, the variational condition requires the minimization of F [ + ] .  This 
process is straight forward to perform numerically: a simple functional form 
of + ( I )  containing a finite number of adjustable constants ai ,  i = 1, . . . , n is 
assumed and the constants are varied to make F[+J stationary, 

In the present work the trial function for the optimized potential is chosen 
to be 

m 

n = O  

= - B E  o < r < l a  (25)  

= o  r > Lo 

and the numerical minimization is performed using a gradient routine.39 It is 
clear that any finite-order expansion such as (25) spans only a particular sub- 
space and the first task will be to check whether a chosen value of in will be 
large enough to allow the variational condition %(I)  = g ( r )  = 0 for r < o to 
be satisfied. The variationally determined goRPA(r) for a square well fluid with 
A = 1.5 is shown in Figure l a  for different values of the density n and the 
strength of the attractive interaction E for rn = 0 (this is the RPA) and 
in = 2,4, 6. The corresponding optimized potential + ( I )  is displayed in 
Figure 1 b. 

(We follow the terminology of Andersen et al.: M S A  means that the 
reference system is the analytical PY-solution, whereas for O R P A  and OCT 
the reference system is the semi-empirical “exact” gO(r )  of Verlet and Weis 
together with the Carnahan-Starling4’ expressions for the thermodynamic 
quantities. In this case co(r) is calculated using the technique of Grundke and 
H e n d e r ~ e n . ~ ~  Throughout this paper the following reduced units will be 
employed: density n* = no3, temperature (depth of square well) 
T* = pressure P* = p p / n ,  internal energy U* = 2U/?/3N, distance 
I* = r/o and wave-vector q* = qo). 

We see that even for high densities and strongly attractive interactions 
m = 4 is usually sufficient to satisfy the variational condition (since we 
require + ( I )  to be continuous for r = u, this corresponds to a four-parameter 
solution). Setting in = 6 brings considerably increased numerical difficulties, 
but only a marginal improvement. Going from rn = 4 to m = 6, the lowering 
of the value of the functional F[+(r)J is only of the order of magnitude of 
-0.5 % and even considerably smaller in most cases. Therefore a value of 
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1 IT' = 0) 

\ 

I 
I 

I 

1lT'= Q4 

I 
I 

llT' = 1,O 

(a) 

FIGURE I a) Pair correlation function of a square-well fluid with 1 = 1.5, calculated in the 
ORPA with rn variational parameters (see Eq. (24)). Solid line rn = 0 (=RPA), dashed line 
m = 2, dotted line m = 4 and dot dashed line m = 6. For 1/T* = 1.0, the crosses indicate the 
result of the Monte-Carlo simulation (Ref. 15). b) Optimized potential 4(r) for a square-well 
fluid inside the hard core. See Figure la .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



STRUCTURE OF SQUARE-WELL FLUID 

1/T'= 0,l 

117 

1 

-1 

-4/c n'4.5 

VT-= 1,0 

I. 

FIGURE 1 (b) 
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I I X  G .  KAHL A N D  J .  HAFNER 

rn = 6 was considered to be sufficient and no attempt was made to go beyond 
that. 

The minimization of F[4] was possible over the entire density range and 
for square well depths as large as 1/T* = 1.25. For more attractive potentials 
(or lower temperatures) the minimization becomes more difficult (the starting 
gradients (8F/dai),,  = are very large) and the calculation is increasingly 
time-consuming. However, for 1/T* > 1.25 and not too high densities 
(n* < 0.60) we are already in the coexistence region of the ( p ,  T )  phase 
diagram. Hence, the minimization may be very conveniently performed for 
the entire liquid region. 

A further possibility to check the accuracy of the variational solution of 
the MSA is to compare it with the integral equation-solution of Smith et 
a/.' This is done in Table I. It is shown that even for a rather restricted set of 
variational parameters the variational result converges very well towards 
the result obtained by solving the MSA integral-equation. Only for the 
lowest temperatures a six-parameter minimization is really required, for 
higher temperatures (weaker potentials), a four parameter calculation is 
usually entirely sufficient. 

TABLE I 

Comparison of thermodynamic quan- 
tities calculated using the variational 
and the integral-equation formulation 
of the MSA: internal energy U* (com- 
puted from the energy equation), pres- 
sure P* (computed from the virial 
equation). The first four lines give the 
variational result ( m  is the number of 
parameters, m = 0 is equivalent to the 
RPA), the fifth line the result obtained 
by solving the MSA-integral equation 
(taken from Ref. IS). n* = 0.5 

I/T* U *  

0.7228 
0.7741 

0. I 0.7742 
0.7743 
0.7741 

- 1.8908 
- 1.6610 

1.0 -1.6651 
-1.6691 
- 1.6792 

P* m 

2.8172 0 
2.8052 2 
2.8033 4 
2.8022 6 
2.8009 

-0,7372 0 
-0.6065 2 
-0.5988 4 
-0.6047 6 
- 0.6023 
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STRUCTURE OF SQUARE-WELL FLUID 119 

4 STRUCTURE AND THERMODYNAMICS OF THE 
SQUARE-WELL FLUID WITH 1=1.5 

We turn now to the discussion of the results obtained by using the MSA, 
ORPA and OCT for a calculation of the structure and thermodynamics of a 
square-well fluid with A = 1.5 (the influence of a variable range of the attrac- 
tive potential will be discussed further below). 

The pair correlation function g ( r )  is plotted in Figures 2 to 4 for a series of 
different densities and pressures. The comparison with the Monte-Carlo 
computer sir nu la ti on^'^ shows gMSA(r) to be remarkably accurate, except 
for r* 2 A and high densities and low temperatures, where gMSA(r) is too low. 
gORpA(r) is seen to be no improvement over gMsA(r): goRPA(r) is invariably 
too high at contact (r* = 1) and it shares the deficiency ofgMsA(r) near r* 2 A. 
The exponential approximation gExp(Y) is more accurate at contact, but for 
low densities and temperatures, gEXp(r) is too high at both sides of the dis- 
continuity at r* = A. A better overall agreement is obtained with the linear- 
ized version of the exponential approximation (LEXP), proposed by Verlet 
and Weis41 

(26) 

but only for r* 2 1 LEXP is really superior to the MSA. However, it should 
not be overlooked that the good agreement obtained with the MSA is'at 
least to some degree fortuitous: both go(') and WMSA(r) are too small individ- 
ually and there is an appreciable cancellation of errors. 

The static structure factor for a square-well fluid with 1 = 1.5 calculated 
using the RPA and the ORPA is shown in Figure 5. The optimization 
strongly reduces the magnitude of the first peak. The comparison with the 
hard-sphere structure factor So(q) shows that the optimization tends to 
reduce the influence of the attractive forces on the structure of the liquid. 
The density-dependence of the ORPA square-well structure factor is shown 
in Figure 6. S ( q )  is seen to be strongly damped with decreasing density. The 
most important effect of the attractive interactions is to enhance the low-q 
limit of S(q)  compared to the sphere fluid: at n* = 0.1 SORPA (0) = 1.04 for 
I/T* = 0.5 compared to S,(O) = 0.66. 

There are several routes from the pair correlation function to the thermo- 
dynamic quantities: the energy U* may be calculated using the energy 
equation 

SLEXP(I) = g,(r)(l + %((I)) 

u* = 1 - 47c _ _  n* /l'g(r*)r*2 dr* 
3 T* 

or by numerically differentiating the free energy with respect to the temper- 
ature. 
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1/T*= lJ0 
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g(r' 

1 

95 
0,7 

5 F 

dr' 
1/T*= 05 
n* = 08 I. 

1 

I 

15 r" 

I IJT'= iJo 
n* = 0,7 

I 

1 15 re. 
0 

1 

'J5 r 
FIGURE 3 See Figure 2 
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I 

r* 
01 

1 15 
FIGURE 4 See Figure 2. 

I ORPA 

FIGURE 5 Static structure factor for the square-well fluid with L = 1.5, calculated in the RPA 
(dotted line) and in the ORPA (full line), and for a hard sphere fluid of same density (dot dashed 
line). 
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STRUCTURE OF SQUARE-WELL FLUID I23 

, ORPA 1/T’=O,5 
‘ I  

FIGURE 6 Density dependence of the static structure factor of the square-well fluid in the 
ORPA:--* = 0 . 1 , - - - - n b = 0 . 3  ,.... n* = 0 . 5 , - . - n * = 0 . 7  ,-.._ ,+ =0,9, 

The pressure can be calculated from the virial equation 

Eq. (28) has to be handled with some care because both u(r*) and g(r*)  are 
discontinuous at r* = 1 and r* = A. The integrand may be rewritten as 
pg(r)(du(r)/dr) = y(r)(de(r)/dr) (e(r) standing for exp( - pu(r))), and if y(r )  
is continuous (EXP), the integral may be conveniently calculated in this 
form giving’ 

2n 
P* = 1 + - 3 n*{g(a+) - A 3 ( g ( A r L )  - g(no+))} (29) 

For the MSA, ORPA and LEXP approximations y ( r )  is discontinuous for 
r* = A. Smith et al.” have shown that the pressure equation may be written 
as 

A 3  

2n 3 { 2T 
P* = 1 + --* g(u+) - --s;(g(Aa-) + g ( A c + ) )  

A second way to calculate the pressure is to integrate U/T with respect to 
the temperature to obtain the free energy A and then to differentiate A numeri- 
cally with respect to n to obtain the pressure. For the MSA and the ORPA 
this is performed analytically to yield” 

1 A3 
- gi(O+) - F(g(Aa- )  + g(Aa+)) (31) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



124 G. KAHL AND J. HAFNER 

where go and P,* are the hard-sphere correlation function and pressure, the 
latter being given by the Carnahan-Starling4' expression. For the OCT 
(= ORPA + B,) and LEXP approximations an analytical calculation is not 
possible and the energy-equation-pressure must be calculated by differenti- 
ating the free energy A (given by eqs. (22),(23)) numerically with respect to 
density. 

A third way to the equation of state is the compressibility equation relating 
the isothermal compressibility xT to the long-wave length limit of the static 
structure factor 

In Table I1 the internal energies are compiled and compared with the 

TABLE I1 

Reduced internal energy U* for the square-well fluid with 1 = 1.5, 
calculated using the energy equation for the MSA, ORPA, 
OCT (=EXP) and LEXP approximations and compared with 
the Monte Carlo (MC) results of Ref. 20 

n* 

1/T* 

0.25 

0.50 

0.75 

1 .oo 

1.25 

0.5 

0.421 
0.421 
0.418 
0.420 
0.420 

-0.209 
-0.210 
-0.233 
-0.220 
-0.212 

-0.905 
-0.906 
-0.981 
-0.935 
-0.946 

- 1.665 
- 1.676 
- 1.865 
- 1.747 
- 1.713 

0.6 

0.289 
0.291 
0.292 
0.294 
0.289 

- 0.475 
- 0.469 
- 0.474 
-0.461 
-0.472 

- 1.293 
- 1.289 
- 1.322 
- 1.276 
- 1.293 

-2.156 
-2.151 
- 2.245 
-2.137 
-2.183 

0.7 

0.159 
0.164 
0.171 
0.172 
0.162 

-0.733 
-0.724 
-0.708 
-0.695 
- 0.705 

- 1.680 
- I .668 
- 1.648 
- 1.604 
- 1.676 

- 2.664 
- 2.650 
-2.646 
- 2.540 
- 2.658 

- 3.700 
- 3.675 
-3.709 
- 3.498 
- 3.675 

0.8 

0.043 
0.048 
0.061 
0.062 
0.045 

-0.962 
-0.956 
-0.908 
-0.897 
- 0.954 

-2.028 
- 1.987 
- 1.937 
- 1.842 
- 1.996 

-3.126 
-3.114 
- 2.999 
-2.903 
-3.125 

-4.276 
-4.275 
-4.148 
- 3.957 
-4.252 

MSA 
ORPA 
EXP 
LEXP 
MC 

MSA 
ORPA 
EXP 
LEXP 
MC 

MSA 
ORPA 
EXP 
LEXP 
MC 

MSA 
ORPA 
EXP 
LEXP 
MC 

MSA 
ORPA 
EXP 
LEXP 
MC 
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STRUCTURE OF SQUARE-WELL FLUID 125 

results of the computer experiment. The predictions of the MSA and the 
ORPA are remarkably accurate over the entire range of temperatures and 
pressures. Generally the difference between theory and computer experiment 
is smaller than two percent, i.e. smaller than the statistical inaccuracy of the 
computer simulation. The EXP and LEXP approximations are appreciably 
worse than the MSA and ORPA results. 

The corresponding results for the pressure are given in Table 111. In the 
MSA the pressures calculated via the energy equation are in good agreement 

, TABLE 111 

Reduced pressure P* for the square-well fluid with I = 1.5, 
calculated using thevirial equation in the MSA, ORPA, OCT 
(= EXP) and LEXP approximations. For the MSA the 
pressure calculated using the energy equation is given as well. 
The Monte Carlo results of Ref. 20 are given for comparison. 

1/T* 

0.25 

0.50 

0.75 

1.00 

1.2s 

0.5 

2.24 
2.28 
2.34 
2.29 
2.29 
2.31 

1.29 
1.30 
1.42 
1.32 
1.33 
1.35 

0.34 
0.35 
0.47 
0.33 
0.39 
0.46 

-0.59 
-0.56 
-0.46 
-0.63 
-0.48 
-0.45 

0.6 

3.03 
3.1 1 
3.24 
3.12 
3.13 
3.13 

1.91 
1.97 
2.17 
1.96 
I .94 
1.97 

0.85 
0.96 
1.08 
0.74 
0.78 
0.70 

-0.25 
-0.37 

0.01 
-0.43 
-0.32 
-0.21 

0.7 0.8 

4.21 5.93 
4.43 6.49 
4.62 6.71 
4.43 6.48 
4.43 6.48 
4.49 6.41 

3.09 4.83 
3.19 5.29 
3.49 5.58 
3.16 5.17 
3.15 5.16 
3.20 5.08 

1.94 3.73 
1.92 4.01 
2.34 4.38 
1.84 3.73 
1.86 3.74 
1.82 3.84 

0.79 7.64 
0.66 2.84 
1.17 3.28 
0.50 2.49 
0.58 2.57 
0.59 2.34 

-0.32 1.52 
-0.67 1.63 
-0.04 2.12 
-0.95 2.14 
-0.76 1.31 
-0.54 1.35 

MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC 

MSA-V 

ORPA 
EXP 
LEXP 
MC 

MSA-E 

MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC 

MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC 

MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC 
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126 G. KAHL A N D  J. HAFNER 

with experiment, much better than those calculated from the virial equation. 
The discrepancy between the two pressures is a measure for the internal 
inconsistency of a theory. In the case of the MSA the difference is quite large, 
especially for high densities and high temperatures. In the case of the OCT 
the consistency check is more difficult to perform: we have to compare the 
pressure P; calculated from the virial equation (29) and the g(r*)  ORPA- 
EXP with the pressure P: obtained by numerically differentiating the free 
energy computed in the ORPA + B ,  (21,22) with respect to density. For the 
energy this means that U $  calculated from Eq. (27) (and ORPA-EXP for 
g(r ) )  is compared with V: obtained by numerically differentiating A / T  
computed as ORPA + B2) with respect to T. The consistency check for the 
OCT is presented in Table IV. The OCT satisfies the required consistency 
very well for the case of the internal energy and even for the pressure the 
OCT is found to be somewhat better consistent than the MSA. The MSA- 
energy-equation P* and the EXP and LEXP virial-equation pressures show 
the best agreement with the computer experiment, for strongly attractive 
potentials the LEXP and MSA-E pressures are more accurate than the 
EXP-result. 

Smith and c o - ~ o r k e r s ' ~  have shown that for the square-well fluid the MSA 
is definitely superior to PY and HNC theories. Our work demonstrates that 

TABLE IV 

Comparison of the OCT values for U,+ and P$ derived from the energy and virial equations 
respectively and by differentiating the ORPA + B, free energy ( U ; ,  P:). 

n* 
~~ ~ 

0 2  0.4 0.6 0.8 

0.1 0.920 0.920 0.826 0.825 0.723 0.723 0.626 0.627 
0.2 0.831 0.830 0.643 0.640 0.437 0.437 0.246 0.250 
0.3 0.732 0.730 0.451 0.444 0.145 0.144 -0.141 -0.131 
0.4 0.621 0.616 0.248 0.234 -0.156 -0.159 -0.534 -0.517 

n* 

0.3 0.5 0.7 

I,'T* Pf; P: Pf, P: P:. P: 

0.0 2.01 1.75 3.29 3.17 5.77 5.32 
0.1 1.80 1.76 2.91 2.88 5.26 5.22 
0.2 1.59 1.54 2.52 2.49 4.76 4.69 
0.3 1.38 1.33 2.14 2.10 4.25 4.17 
0.4 1.17 1 . 1 1  1.76 1.70 3.76 3.68 
0.5 0.96 0.89 1.38 1.32 3.26 3.16 
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STRUCTURE OF SQUARE-WELL FLUID 

TABLE V 

Compressibility factors p(dp/an), for the square-well fluid with 
I ,  = 1.5 in the MSA, ORPA and OCT, calculated using the 
compressibility equation ( C )  and by numerically differentiating 
the virial (V) and energy-equation ( E )  pressures. The density is 
n+ = 0.8 

127 

0.1 28.66 22.91 27.28 27.85 27.47 27.42 
0.2 27.62 22.44 27.10 26.88 27.23 27.11 
0.25 27.17 22.36 27.04 26.25 27.09 26.95 
0.3 26.67 22.25 26.70 25.71 26.97 26.80 
0.4 25.70 22.09 26.77 24.51 26.75 26.70 
0.5 24.75 22.07 26.60 23.41 26.27 26.35 

the OCT is more accurate than the PY and HNC approximations, but not 
really superior to the MSA: the OCT gives better results for g(r),  is of com- 
parable accuracy for the pressure, but less accurate for the internal energy. 

The inverse compressibility factor P(ap/dn),  = S(0)- ’ calculated from the 
compressibility equation (32) and by numerically differentiating the virial- 
and energy equation pressures is given in Table V for the MSA, ORPA and 
OCT. Again the ORPA satisfies the compressibility check somewhat better 
than the MSA. The OCT compressibility calculated from the virial equation 
differs only very little from the corresponding ORPA-value. 

These remarks apply only to the special case of A = 1.5. The more general 
case of a variable width of the attractive well is considered in the following 
section. 

5 STRUCTURE AND THERMODYNAMICS OF A SQUARE-WELL 
FLUID WITH A VARIABLE RANGE OF INTERACTION 

Most of the results presented up to now in the literature refer to a square-well 
fluid with A = 1.5. This choice of the range of interaction is a very special one, 
since the outer limit of the attractive potential is made to agree with the first 
minimum of the pair correlation function of the unperturbed hard-sphere 
fluid. Only a very few results for A # 1.5 have been published: Rosenfeld and 
Thieberger” presented Monte-Carlo simulations for A = 1.2042 and 
A = 1.3675 in the density range 0.202 I n* 5 0.707 and in the inverse 
temperature range 0 5 l /T* I 1.0, Tago26 has solved the PY-equation for 
A = 1.85, but no systematic investigation of the influence of the interaction 
range upon the properties of the square-well fluid has been attempted as yet. 

In Figures 7 and 8 we show the pair correlation function of a square-well 
fluid with n* = 0.8 and 1/T* = 0.25 with A varying between 1.2 and 1.7, 
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1/T'=Q25 
n' =a8 

I 1 , 
1 I5 2 r- 

FIGURE 7 Pair correlation functions of a square-well fluid at n* = 0.8, 1/T* = 0.25 as a 
function of the'range of the attractive interaction ( A  = 1.2 to 1.7), calculated in the OCT. The 
variation of the contact-value g(u+)  and of the discontinuity g(1u-) - g(Ao+) with A is shown 
intheinset . I=  1 . 2 : - ; A =  l .3:-;A= 1 . 4 : . . . . ; 1 =  1 . 5 : - . - ; 1 =  1.6:--.-:1= 1.7: 
_. . - 

1 . I5 2 r" 

FIGURE 8 As Figure 7, but MSA-results. 
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STRUCTURE OF SQUARE-WELL FLUID I29 

calculated in the MSA and OCT. The remarkable difference is that for 
I > 1.5 the g(r )  has a minimum in the range o < r < 10, but not for I I 1.5. 
The region around r - 1.50 is a geometrically excluded region for packing 
reasons. That a minimum in g ( r )  exists in the attractive square-well fluid 
indicates that the attractive forces are not strong enough to fill the geometri- 
cally excluded regions. It is also interesting to observe the variation of the 
value of g(r)  at contact @(a+)) and at both sides of the discontinuity (g(Aa-), 
g ( I a + ) )  with I .  For both OCT and MSA g ( a + )  shows a distinct minimum 
close to I = 1.4. The existence of this minimum is a consequence of the inter- 
ference between attractive and repulsive forces: the attractive forces tend to 
fill the attractive well more or less uniformily. If ( A  - 1) is sufficiently small, 
the action of the attractive forces is not hindered by the repulsions, g(cr+) 
decreases as the attractive region is expanded. However, if I 2 1.5, parts of 
the attractive region are at the same time geometrically forbidden. The at- 
tractive forces still tend to fill the attractive well, but because of the repulsive 
forces the particles are pushed to the inner and to the outer boundary of the 
well. Note that the variation of g(a+) with I is distinctly stronger in the MSA. 

In the MSA, the size of the jump discontinuity in g(r )  is by definition con- 
stant, g ( I a - )  - g(Aa+) = 1/T* = /?&. In the OCT we have 

(33) g(Aa- )  - g(A(r+) = go(Iu)e'("-)(l - ,-ae). 

The first two factors vary with A: because of the first factor, the size of the 
discontinuity tends to follow the oscillations of the hard-sphere correlation 
function, the exponential factor tends widen the gap for small A's. 

The characteristically different behaviour of (g( Ia- )  - g(Ao+)) in the 
MSA and in the OCT is also reflected in the thermodynamic properties. 
Characteristic examples for the variation of the reduced internal energy U* 
and the pressureP* with the range of interactionare shown in Figures 9 and 
10. For some selected, but still representative values of the density n* and the 
temperature T*, the combined Monte-Carlo simulation results of Rosenfeld 
and Thieberger" and of Henderson et allow for a critical evaluation of 
the accuracy of the analytical theories. This is presented in Tables VI and VII. 

The results for the internal energy will be discussed first. According to 
Eq, (27) we expect that U* will decrease with increasing A and that this varia- 
tion will be stronger at higher densities. Figure 9 displays the expected be- 
haviour and shows that the U* = U*(A) relation is approximately linear. 
The comparison with the Monte-Carlo results is more informative. For 
I = 1.5 we had to note that the MSA is more accurate than the OCT for a 
calculation of the internal energy, but as for the g(r )  it must be remarked that 
good agreement achieved with the MSA is some degree fortuitous, being due 
to a cancellation of errors. The new results for smaller I show that this is true 
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FIGURE 9 Internal energy U' of a square-well fluid as a function of range of interaction (A)  
for two different sets of (P, n* )  in the MSA (solid line), ORPA (dotted line) and OCT (dot- 
dashed line). 

PU 

7 t  

f 

FIGURE 10 Pressure P* of a square-well fluid as a function of range of interaction (A) for 
two different sets of (T* ,  n'): MSA (virial equation): solid line, MSA (energy equation): 
dashed line, ORPA (virial equation): dotted line, OCT (virial equation): dot-dashed line. 
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STRUCTURE OF SQUARE-WELL FLUID 131 

TABLE VI 

Reduced internal energy U* for the square-well fluid with variable I ,  calculated using 
the energy equation for the MSA, ORPA, OCT (= EXP) and LEXP approximations 
and compared with the Monte Carlo (MC) results of Refs. 20 and 21. 

I = 1.2042 1 = 1.3675 I = 1.5 
1/T* n* U* n* CJ* n* U* 

0.25 0.7071 

0.50 0.4714 

1.00 0.4714 

0.25 0.3536 

0.596 
0.592 
0.579 
0.580 
0.584' 

0.542 
0.536 
0.486 
0.498 
0.498' 

-0.038 
-0.053 
-0.333 
-0.213 
-0.233" 

0.855 
0.854 
0.846 
0.847 
0.843" 

0.7071 

0.4714 

0.4714 

0.3536 

0.346 
0.351 
0.349 
0.351 
0.331' 

0.187 
0.184 
0.144 
0.155 
0.149" 

-0.820 
-0.831 
- 1.083 
-0.968 
-0.966' 

0.729 
0.727 
0.720 
0.721 
0.717" 

0.70 

0.50 

0.50 

0.159 MSA 
0.164 ORPA 
0.171 EXP 
0.172 LEXP 
0.162b MC 

-0.209 MSA 
-0.210 ORPA 
-0.233 EXP 
-0.220 LEXP 
-0.212b MC 

-1.665 MSA 
-1.676 ORPA 
-1.865 EXP 
-1.747 LEXP 
-1.713b MC 

a According to Ref. 21. 
According to Ref. 20. 

indeed the cancellation of errors works only for 1 = 1.5, for smaller L the OCT 
and the LEXP yield more accurate internal energies at all densities and temp- 
eratures. 

The variation of the pressure with the range of interaction is more compli- 
cated. The reduced pressure consist (except for the constant ideal-gas contri- 
bution) of a positive contribution depending on the value of the pair correla- 
tion function at contact and a negative contribution proportional to the gap 
in g ( r )  at r = 10 (see Eqs. (29) to (31)). The negative term is proportional to 
A3 and for not too high density (n* < 0.8) and low temperatures this term 
dominates, yielding a decreasing P* with increasing A. However, as the gap 
in g ( r )  either decreases (EXP-virial-equation) or is modulated with the 
function (g (Ao+)  + g(Au-) )  (MSA, ORPA virial and energy equations), the 
decrease of P* is only approximately linear with 1 for 1 5 1.6, but steeper for 
1.7 I 1 52.0.  (Figure 10). Things are more complicated at high densities 
and temperatures where the positive contribution to the pressure dominates 
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I32 G. KAHL A N D  J.  HAFNER 

TABLE VII 

Reduced pressure P* for the square-well fluid with variable A, calculated using the virial 
equation in the MSA, ORPA, OCT (= EXP) and LEXP approximations. For the MSA the 
pressure calculated using the energy equation (MSA-E) is given as well. Monte Carlo sirnula- 
tion results are shown for comparison. 

~ 

I = 12042 1. = 1.3675 J. = 1.5 
I/T* n* P* n* P* n* P* 

0.25 

0.50 

I .oo 

0.25 

0.7071 

0.4714 

0.4714 

0.3536 

4.40 
4.79 
4.89 
4.88 
4.88 
4.81 k 0.20 

1.84 
2.07 
1.92 
2.09 
2.07 
2.09 k 0.09 
0.63 
1.10 
0.73 
1.04 
1.03 
0.90 0.12 

1.87 
1.95 
1.89 
1.96 
I .95 
1.92 4 0.05 

0.7071 4.36 
4.57 
4.82 
4.60 
4.59 
4.31 k 0.13 

0.4714 1.47 
1.54 
1.57 
1.56 
1.58 
1.59 0.09 

0.4714 -0.05 
0.11 
0.07 
0.02 
0.15 
0.05 k 0.24 

0.3536 1.70 
1.75 
1.73 
1.75 
1.75 
1.80 k 0.08 

0.70 4.21 
4.43 
4.62 
4.43 
4.43 
4.49 

0.50 1.29 
1.30 
1.42 
1.32 
1.33 
1.35 

0.50 -0.59 
-0.56 
-0.46 
-0.63 
- 0.48 
-0.45 

MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC, 
MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC, 
MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC, 
MSA-V 
MSA-E 
ORPA 
EXP 
LEXP 
MC, 

~ ~ ~ ~ 

' MC results according to Ref. 21 for 1 = 1.2042 and 1 = 1.3675 and after Ref. 20 for 
].=I5 

and g(a+) shows a rather strong dependence on 1. In this region P* shows a 
non- monotonous dependence on A, whose details can be traced back to the 
A-dependence of g(a+) and (g(Aa-) - g(Ao+) discussed earlier in this section 
(see Figures (lo), (7), (8) and Eqs. (29) to (31)). 

The comparison of the calculated pressures with the results of the computer 
simulation demonstrates again that the MSA-E, EXP and LEXP pressures 
are the most accurate ones. For small 1 and strongly attractive potentials the 
EXP and LEXP pressures are more accurate than MSA-E, the latter tends 
to overestimate the pressure. 

The fact that the MSA overestimates both U* and P* for small 1 and large 
1/T* may be traced back to the behaviour of the pair correlation function 
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STRUCTURE OF SQUARE-WELL FLUID I33  

near r = ACT. The MSA, i.e. (g(Ao-) - g(1a.)) = /?E turns out to be inaccurate 
for small A, the larger gap produced by the EXP and LEXP is certainly more 
accurate. 

6 CONCLUSIONS 

We have presented a critical evaluation of the optimized cluster theory, the 
optimized random phase approximation and of the mean spherical model 
for the example of a square-well fluid with a variable range of the attractive 
interaction. The investigation of the influence of the range of the interaction 
on the structure and the thermodynamic properties are particularly instruct- 
ive. The results demonstrate that the OCT is definitely superior to the MSA, 
both in the accuracy of the predictions of the thermodynamic quantities and 
the pair correlation function in comparison to the computer experiment, and 
in its internal consistency. Earlier results for the special case of 1 = 1.5' had 
indicated that the OCT thermodynamic properties are no better over all than 
the MSA results. Our work shows that this holds only for A = 1.5 and is 
largely due-as had already been suspected- to a fortuitions concellation of 
errors. Our results for the square-well fluid supplement the results of Ander- 
sen et aL4 for the Lennard-Jones fluid in establishing the accuracy of the OCT 
in describing the effect of attractive forces on the structure and thermo- 
dynamics of liquids. 
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